514 research outputs found

    A bibliometric index based on the complete list of cited Publications

    Get PDF
    We propose a new index, the j-index, which is defined for an author as the sum of the square roots of the numbers of citations to each of the author’s publications. The idea behind the j-index it to remedy a drawback of the h-index - that the h-index does not take into account the full citation record of a researcher. The square root function is motivated by our desire to avoid the possible bias that may occur with a simple sum when an author has several very highly cited papers. We compare the j-index to the h-index, the g-index and the total citation count for three subject areas using several association measures. Our results indicate that that the association between the j-index and the other indices varies according to the subject area. One explanation of this variation may be due to the proportion of citations to publications of the researcher that are in the h-core. The j-index is not an h-index variant, and as such is intended to complement rather than necessarily replace the h-index and other bibliometric indicators, thus providing a more complete picture of a researcher’s achievements

    Measuring impact of academic research in computer and information science on society

    Get PDF
    Academic research in computer & information science (CIS) has contributed immensely to all aspects of society. As academic research today is substantially supported by various government sources, recent political changes have created ambivalence amongst academics about the future of research funding. With uncertainty looming, it is important to develop a framework to extract and measure the information relating to impact of CIS research on society to justify public funding, and demonstrate the actual contribution and impact of CIS research outside academia. A new method combining discourse analysis and text mining of a collection of over 1000 pages of impact case study documents written in free-text format for the Research Excellence Framework (REF) 2014 was developed in order to identify the most commonly used categories or headings for reporting impact of CIS research by UK Universities (UKU). According to the research reported in REF2014, UKU acquired 83 patents in various areas of CIS, created 64 spin-offs, generated £857.5 million in different financial forms, created substantial employment, reached over 6 billion users worldwide and has helped save over £1 billion Pounds due to improved processes etc. to various sectors internationally, between 2008 and 2013

    Characterisation of the x-index and the rec-index

    Get PDF
    Axiomatic characterisation of a bibliometric index provides insight into the properties that the index satisfies and facilitates the comparison of different indices. A geometric generalisation of the h-index, called the x-index, has recently been proposed to address some of the problems with the h-index, in particular, the fact that it is not scale invariant, i.e., multiplying the number of citations of each publication by a positive constant may change the relative ranking of two researchers. While the square of the h-index is the area of the largest square under the citation curve of a researcher, the square of the x-index, which we call the rec-index (or rectangle-index), is the area of the largest rectangle under the citation curve. Our main contribution here is to provide a characterisation of the rec-index via three properties: monotonicity, uniform citation and uniform equivalence. Monotonicity is a natural property that we would expect any bibliometric index to satisfy, while the other two properties constrain the value of the rec-index to be the area of the largest rectangle under the citation curve. The rec-index also allows us to distinguish between in uential researchers who have relatively few, but highly-cited, publications and prolific researchers who have many, but less-cited, publications

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    A Markov chain model for changes in users’ assessment of search results

    Get PDF
    Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same ”coarse” relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users’ judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results

    Next-generation metrics: responsible metrics and evaluation for open science

    Get PDF
    This is the final report of the European Commission's Expert Group on Altmetrics, which undertook its work over the course of 2016. The report outlines a framework for next-generation metrics in the context of the EC's Open Science agenda and includes a series of recommendations for how responsible metrics can be built into the design and evaluation of the EU's Ninth Framework Programme (FP9)

    A novel bibliometric index with a simple geometric interpretation

    Get PDF
    We propose the χ-index as a bibliometric indicator that generalises the h-index. While the h-index is determined by the maximum square that fits under the citation curve of an author when plotting the number of citations in decreasing order, the χ-index is determined by the maximum area rectangle that fits under the curve. The height of the maximum rectangle is the number of citations ck to the kth most-cited publication, where k is the width of the rectangle. The χ-index is then defined as , for convenience of comparison with the h-index and other similar indices. We present a comprehensive empirical comparison between the χ-index and other bibliometric indices, focusing on a comparison with the h-index, by analysing two datasets—a large set of Google Scholar profiles and a small set of Nobel prize winners. Our results show that, although the χ and h indices are strongly correlated, they do exhibit significant differences. In particular, we show that, for these data sets, there are a substantial number of profiles for which χ is significantly larger than h. Furthermore, restricting these profiles to the cases when ck > k or ck < k corresponds to, respectively, classifying researchers as either tending to influential, i.e. having many more than h citations, or tending to prolific, i.e. having many more than h publications

    Notions of Connectivity in Overlay Networks

    Get PDF
    International audience" How well connected is the network? " This is one of the most fundamental questions one would ask when facing the challenge of designing a communication network. Three major notions of connectivity have been considered in the literature, but in the context of traditional (single-layer) networks, they turn out to be equivalent. This paper introduces a model for studying the three notions of connectivity in multi-layer networks. Using this model, it is easy to demonstrate that in multi-layer networks the three notions may differ dramatically. Unfortunately, in contrast to the single-layer case, where the values of the three connectivity notions can be computed efficiently, it has been recently shown in the context of WDM networks (results that can be easily translated to our model) that the values of two of these notions of connectivity are hard to compute or even approximate in multi-layer networks. The current paper shed some positive light into the multi-layer connectivity topic: we show that the value of the third connectivity notion can be computed in polynomial time and develop an approximation for the construction of well connected overlay networks

    Reconstruction of Network Evolutionary History from Extant Network Topology and Duplication History

    Full text link
    Genome-wide protein-protein interaction (PPI) data are readily available thanks to recent breakthroughs in biotechnology. However, PPI networks of extant organisms are only snapshots of the network evolution. How to infer the whole evolution history becomes a challenging problem in computational biology. In this paper, we present a likelihood-based approach to inferring network evolution history from the topology of PPI networks and the duplication relationship among the paralogs. Simulations show that our approach outperforms the existing ones in terms of the accuracy of reconstruction. Moreover, the growth parameters of several real PPI networks estimated by our method are more consistent with the ones predicted in literature.Comment: 15 pages, 5 figures, submitted to ISBRA 201

    Search Engine Similarity Analysis: A Combined Content and Rankings Approach

    Full text link
    How different are search engines? The search engine wars are a favorite topic of on-line analysts, as two of the biggest companies in the world, Google and Microsoft, battle for prevalence of the web search space. Differences in search engine popularity can be explained by their effectiveness or other factors, such as familiarity with the most popular first engine, peer imitation, or force of habit. In this work we present a thorough analysis of the affinity of the two major search engines, Google and Bing, along with DuckDuckGo, which goes to great lengths to emphasize its privacy-friendly credentials. To do so, we collected search results using a comprehensive set of 300 unique queries for two time periods in 2016 and 2019, and developed a new similarity metric that leverages both the content and the ranking of search responses. We evaluated the characteristics of the metric against other metrics and approaches that have been proposed in the literature, and used it to (1) investigate the similarities of search engine results, (2) the evolution of their affinity over time, (3) what aspects of the results influence similarity, and (4) how the metric differs over different kinds of search services. We found that Google stands apart, but Bing and DuckDuckGo are largely indistinguishable from each other.Comment: Shorter version of this paper was accepted in the 21st International Conference on Web Information Systems Engineering (WISE 2020). The final authenticated version is available online at https://doi.org/10.1007/978-3-030-62008-0_
    corecore